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The b-Globin Recombinational Hotspot Reduces the Effects of Strong
Selection around HbC, a Recently Arisen Mutation Providing Resistance
to Malaria
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Recombination is expected to reduce the effect of selection on the extent of linkage disequilibrium (LD), but the
impact that recombinational hotspots have on sites linked to selected mutations has not been investigated. We
empirically determine chromosomal linkage phase for 5.2 kb spanning the b-globin gene and hotspot. We estimate
that the HbC mutation, which is positively selected because of malaria, originated !5,000 years ago and that
selection coefficients are 0.04–0.09. Despite strong selection and the recent origin of the HbC allele, recombination
(crossing-over or gene conversion) is observed within 1 kb 5′ of the selected site on more than one-third of the
HbC chromosomes sampled. The rapid decay in LD upstream of the HbC allele demonstrates the large effect the
ß-globin hotspot has in mitigating the effects of positive selection on linked variation.

Recombinational hotspots are a ubiquitous feature of
the human genome, occurring every 60–200 kb, and
likely contribute to the observed pattern of large hap-
lotypic blocks punctuated by low linkage disequilibrium
(LD) over very short (1–2-kb) distances (Gabriel et al.
2002; Jeffreys and May 2004; McVean et al. 2004).
Recombination breaks up ancestral LD and produces
new combinations of alleles on which natural selection
can act. Positive selection increases the frequency of ben-
eficial mutations, creating LD via genetic hitchhiking
(Smith and Haigh 1974). LD has been observed over
great physical distances at several genes experiencing re-
cent selection, including loci associated with malarial
resistance (Tishkoff et al. 2001; Sabeti et al. 2002; Saun-
ders et al. 2002; Ohashi et al. 2004). The b-globin hot-
spot spans ∼1 kb and is located ∼500 bp from the se-
lected site at the b-globin gene (Harding et al. 1997;
Wall et al. 2003). The close proximity of these b-globin
regions allows us, for the first time, to empirically ex-

Received May 17, 2005; accepted for publication July 25, 2005;
electronically published August 29, 2005.

Address for correspondence and reprints: Dr. Elizabeth Wood, De-
partment EEB, Biosciences West, University of Arizona, Tucson, AZ
85721. E-mail: ewood@u.arizona.edu

� 2005 by The American Society of Human Genetics. All rights reserved.
0002-9297/2005/7704-0012$15.00

amine the signature of selection across a region that
recombines at a rate 50 (Wall et al. 2003; Winckler et
al. 2005) to 90 (Schneider et al. 2002) times higher than
the genomic average of 1.1 cM/Mb (Kong et al. 2004).

More than 50 years ago, Haldane (1949) and Allison
(1954) proposed that elevated frequencies of hemoglo-
binopathies such as thalassemia and sickle cell disease,
which are caused by mutations at the b-globin locus,
are maintained via balancing selection (“the malarial
hypothesis”). Since then, malarial-resistant alleles have
been identified at several other loci, including G6PD,
TNF, and HLA (Kwiatkowski 2005). Early studies of
the b-globin HbC polymorphism (b6GlurLys) suggested
that this allele was also subject to balancing selection
(Allison 1956). More recently, it has been shown that
HbC provides protection against Plasmodium falcipa-
rum malaria without significantly reducing fitness, in-
dicating that this allele is increasing in frequency as a
result of positive directional selection (Agarwal et al.
2000; Modiano et al. 2001; Hedrick 2004; Rihet et al.
2004). Because the African HbC allele rarely exceeds
frequencies of 20% and is geographically concentrated
in central West Africa, it is thought that this mutation
is very young (Livingstone 1976; Trabuchet et al. 1991;
Modiano et al. 2001). Here, we examine the extent of
LD surrounding the African HbC allele, to estimate its
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age and the strength of selection acting on this mutation
and to test the hypothesis that the b-globin recombi-
national hotspot decouples the selected HbC allele from
nearby upstream regions (fig. 1a).

To generate 5.2 kb of contiguous phased sequence
data, we cloned two ∼3-kb fragments that were tiled
together using polymorphic sites in the overlapping re-
gion (fig. 1b). We examined 17 heterozygous and 2 ho-
mozygous individuals carrying the HbC mutation and
supplemented the data set by including 18 additional
African HbA chromosomes (fig. 2). Within the 5.2-kb
fragment spanning the b-globin hotspot and gene region,
we observe 46 segregating sites. To delineate the bound-
aries of the hotspot in our data, we examine the extent
of LD among 35 HbA chromosomes (fig. 1c). The
boundaries for the three recombinational regions cor-
respond well with those observed in a sample of 16
African Hausa individuals (Wall et al. 2003) and in a
larger study of 349 globally distributed individuals (Har-
ding et al. 1997).

To examine the effects of selection, we compared pat-
terns of LD on selected chromosomes with those on
nonselected chromosomes. Substantially more LD is ob-
served among HbC than HbA chromosomes (fig. 2). We
employed a coalescent-based method that incorporates
recombination (c), effective population size ( ), andNe

population growth (r) to jointly estimate the selection
coefficient (s) and the time since the origin of the HbC
allele ( ). The selection coefficient is estimated usingt1

Slatkin and Bertorelle’s (2001) method for estimating
the likelihood of s from allele frequency and the extent
of LD with a neutral marker locus. The allele age is
estimated from the posterior probability distribution of
t1 as a function of s. Analyses were performed on the
basis of haplotypes generated from sites �2906 and 16
(HbC), where we assume that the A allele at site 16 arose
on a chromosome carrying a C at �2906 and that the
frequency of HbC is 15% in the present generation.
Figure 3a shows the likelihood of s given the data, under
the assumption that and , for a rangeN p 10,000 r p 0e

of recombination rates (c). For all values of c, we reject
neutrality ( ) and conclude that s is most likely�5P ! 10
in the range 0.04–0.09. Neutrality is also rejected when
we incorporate a population growth rate as high as

for and forr p 0.009 c p 0.004 r p 0.02 c p 0.008
(data not shown). Figure 3b shows the posterior distri-
butions of the age of HbC for the three maximum-like-
lihood estimates of s obtained using three different val-
ues of c. The age of the allele using this method depends
primarily on s and is affected little by c (data not shown).
The estimated age is 75–150 generations ago (or 1,875–
3,750 years, under the assumption of a 25-year gener-
ation time), with an upper bound !275 generations. Past
growth would make the allele slightly younger, so esti-
mates of age based on the results are conservative.r p 0

Our estimates accord well with those obtained using
theoretical predictions from epidemiological data, where

generations and (Hedrick 2004) (seet ! 150 s ∼ 0.081

the “Material and Methods” section [online only]).
At least three HbC chromosomes in our survey

(15.8%), given at the bottom of figure 2, show evidence
for crossing-over and/or gene conversion within the hot-
spot. Dgn66HbC contains a 5′ haplotype motif identical
to seven HbA chromosomes (AGCGTCTGCGA from
sites �3092 to �1944), which is likely the result of a
single crossover event occurring between sites �1944
and 16. Dgn99HbC possesses polymorphisms ATCTC,
from sites �835 to �598, that are also found in four
HbA chromosomes and may be due to gene conversion
or double crossing-over. Dgn83HbC has a CACA motif,
at sites �1927, �835, �598, and �543, that is also
found in three HbA chromosomes. However, Dgn83HbC

does not contain intervening polymorphisms that are
identical to HbA chromosomes surveyed here and may
be the result of a single cross-over event where the re-
combining HbA chromosome is not represented in our
data set, or it may be the result of multiple cross-over
and/or gene conversion events. Because of the higher
rate of gene conversion relative to crossing-over (4:1 to
15:1) (Jeffreys and May 2004), it is likely that gene
conversion is responsible for some of the patterns we
observe. Evidence for recombination is observed in an
additional five individuals (for a total of 38.1%), un-
der the assumption that the HbC mutation occurred
on the most common HbC haplotype observed (e.g.,
Dgn06HbC) (fig. 2). An alternative explanation is that
recurrent mutation occurred at site 16-HbC or at sites
described in the “recombinant” motifs in Dgn66,
Dgn99, or Dgn83. However, this hypothesis requires ei-
ther (1) independent mutations at site 16-HbC on four
different HbC haplotypic backgrounds or (2) that three
(Dgn99), four (Dgn83), or five (Dgn66) sites have mu-
tated 5′ of the gene on both the HbA and HbC back-
grounds. Thus, it seems unlikely that elevated rates of
mutation would cause decay in LD observed on the HbC
chromosomes.

The extent of LD surrounding a selected allele is ex-
pected to depend on the age of the allele, the strength of
selection, and the rate of recombination. The recent origin
(!5,000 years) and high selection coefficient (0.04 ! s !

) of the HbC allele estimated here are roughly com-0.09
parable to those of other malarial-resistance loci, includ-
ing G6PD/A- (!11,800 years; ) (Tishkoff et0.02 ! s ! 0.2
al. 2001; Saunders et al. 2002, 2005), and G6PDmed
(!6,500 years; ) (Tishkoff et al. 2001; M.0.01 ! s ! 0.2
Saunders, M. Slatkin, M. F. Hammer, and M. W. Nach-
man, unpublished data). Long-range LD extends 400–
1,600 kb at loci recombining near the genome aver-
age, including G6PD/A-, G6PDmed, and TNFSF5/726C
(Tishkoff et al. 2001; Sabeti et al. 2002; Saunders et al.



Figure 1 a, Map of the b-globin gene cluster found on 11p15.5. Four functional globin genes, one pseudogene, and the locus control
region (LCR) that controls transcription and replication of the globin gene cluster (Aladjem et al. 1995) are located 5′ of the b-globin gene.
The position of the recombinational hotspot identified using RFLP analysis (A) (Chakravarti et al. 1984) and single-sperm typing (B) (Schneider
et al. 2002) are shown above. b, Magnified view of b-globin gene and hotspot, as identified using population sequence data in 16 Africans (C)
(Wall et al. 2003) and 349 globally distributed individuals (D) (Harding et al. 1997). The locations of primers that amplify the two 3-kb
fragments are shown with horizontal arrows. The polymorphisms observed in a 5.2-kb region are indicated with International Union of Pure
and Applied Chemistry (IUPAC) codes. Indels were excluded. Exons are shown in horizontal black boxes; introns are depicted by white boxes.
Grey boxes indicate repeat motifs. The HbC mutation is circled. c, LD triangle plot of 35 HbA chromosomes in all pairwise comparisons
between 42 sites. Black boxes indicate a significant value ( ). Values of are 1 unless indicated in white numbers where is′ ′ ′D P ! .01 FDF FDF
multiplied by 100. Dark gray boxes indicate ( ), and white boxes indicate ( ). Light gray boxes correspond to′ ′FDF p 1 P 1 .01 FDF ! 1 P 1 .01
the four segregating sites that are observed only on HbC chromosomes. Asterisks (*) indicate that pairwise comparisons are significant with a
Bonferroni correction. The two regions of low recombination are outlined.
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Figure 2 Polymorphisms observed in 35 HbA (top) and 21 HbC (bottom) chromosomes. To visually represent the decay in haplotype
sharing, the conserved most-common long-range haplotype within the HbA and HbC chromosomes is shaded. Each site was examined se-
quentially, moving away from site 16. Singletons were excluded. Shaded areas include sites that are most frequent within the conserved haplotype.
Recombination, as well as mutation, can cause a transition from gray to white in this depiction. CAR p Central African Republic. DRC p
Democratic Republic of Congo.

2002, 2005; M. Saunders, M. Slatkin, M. F. Hammer,
and M. W. Nachman, unpublished data). The b-globin
locus, however, is unique in that elevated rates of re-
combination are sufficiently strong to reduce the effect
of genetic hitchhiking on the HbC alleles to !1 kb up-
stream of the gene. Thus, recombinational hotspots ap-
pear to quickly erase the signal of strong and recent
selection.

It has been hypothesized that recombination is evo-
lutionarily advantageous because selection can operate

more efficiently when genes are decoupled from one an-
other; this hypothesis predicts that recombination will
be higher in gene-dense regions (Barton and Charles-
worth 1998). A positive correlation between recombi-
nation and gene density (or associated features such as
CpG motifs) has been observed in humans (Kong et al.
2004; McVean et al. 2004). Recombinational hotspots
have been characterized at the intensely selected b-globin
gene cluster and the gene-dense HLA region (Jeffreys et
al. 2000, 2001; Schneider et al. 2002; Winckler et al.
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Figure 3 a, Log-likelihood surface of selection coefficient (s)
under the assumption of no growth ( ), an effective populationr p 0
size ( ) of 10,000, and a recombination fraction (c) ranging fromNe

0.4%–0.8%. b, The posterior distribution of the age (in generations)
of the HbC allele over the three values of s (0.04, 0.07, and 0.09) that
correspond with the maximum-likelihood estimate obtained under the
different values of c shown in panel a.

2005). Although it remains unclear whether this cor-
relation is the result of selection favoring recombination
near genes, our data are consistent with these observa-
tions. The location of the b-globin recombinational hot-
spot may allow selection to act more efficiently on ma-
laria-resistance alleles at b-globin without significantly
affecting the upstream globin gene copies and regulating
locus control region sequence. Future studies will help
determine the extent to which recombinational hotspots
are preferentially located near regions that are under
strong selective pressure.
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